Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
High-precision classification method for breast cancer fusing spatial features and channel features
XU Xuebin, ZHANG Jiada, LIU Wei, LU Longbin, ZHAO Yuqing
Journal of Computer Applications    2021, 41 (10): 3025-3032.   DOI: 10.11772/j.issn.1001-9081.2020111891
Abstract321)      PDF (1343KB)(268)       Save
The histopathological image is the gold standard for identifying breast cancer, so that the automatic and accurate classification of breast cancer histopathological images is of great clinical application. In order to improve the classification accuracy of breast cancer histopathology images and thus meet the needs of clinical applications, a high-precision breast classification method that incorporates spatial and channel features was proposed. In the method, the histopathological images were processed by using color normalization and the dataset was expanded by using data enhancement, and the spatial feature information and channel feature information of the histopathological images were fused based on the Convolutional Neural Network (CNN) models DenseNet and Squeeze-and-Excitation Network (SENet). Three different BCSCNet (Breast Classification fusing Spatial and Channel features Network) models, BCSCNetⅠ, BCSCNetⅡ and BCSCNetⅢ, were designed according to the insertion position and the number of Squeeze-and-Excitation (SE) modules. The experiments were carried out on the breast cancer histopathology image dataset (BreaKHis), and through experimental comparison, it was firstly verified that color normalization and data enhancement of the images were able to improve the classification accuracy of breast canner, and then among the three designed breast canner classification models, the one with the highest precision was found to be BCSCNetⅢ. Experimental results showed that BCSCNetⅢ had the accuracy of binary classification ranged from 99.05% to 99.89%, which was improved by 0.42 percentage points compared with Breast cancer Histopathology image Classification Network (BHCNet); and the accuracy of multi-class classification ranged from 93.06% to 95.72%, which was improved by 2.41 percentage points compared with BHCNet. It proves that BCSCNet can accurately classify breast cancer histopathological images and provide reliable theoretical support for computer-aided breast cancer diagnosis.
Reference | Related Articles | Metrics